Negative allosteric modulation of the mGlu7 receptor reduces visceral hypersensitivity in a stress-sensitive rat strain
نویسندگان
چکیده
Glutamate, the main excitatory neurotransmitter in the central nervous system, exerts its effect through ionotropic and metabotropic receptors. Of these, group III mGlu receptors (mGlu 4, 6, 7, 8) are among the least studied due to a lack of pharmacological tools. mGlu7 receptors, the most highly conserved isoform, are abundantly distributed in the brain, especially in regions, such as the amygdala, known to be crucial for the emotional processing of painful stimuli. Visceral hypersensitivity is a poorly understood phenomenon manifesting as an increased sensitivity to visceral stimuli. Glutamate has long been associated with somatic pain processing leading us to postulate that crossover may exist between these two modalities. Moreover, stress has been shown to exacerbate visceral pain. ADX71743 is a novel, centrally penetrant, negative allosteric modulator of mGlu7 receptors. Thus, we used this tool to explore the possible involvement of this receptor in the mediation of visceral pain in a stress-sensitive model of visceral hypersensitivity, namely the Wistar Kyoto (WKY) rat. ADX71743 reduced visceral hypersensitivity in the WKY rat as exhibited by increased visceral sensitivity threshold with concomitant reductions in total number of pain behaviours. Moreover, AD71743 increased total distance and distance travelled in the inner zone of the open field. These findings show, for what is to our knowledge, the first time, that mGlu7 receptor signalling plays a role in visceral pain processing. Thus, negative modulation of the mGlu7 receptor may be a plausible target for the amelioration of stress-induced visceral pain where there is a large unmet medical need.
منابع مشابه
Phasic and Tonic mGlu7 Receptor Activity Modulates the Thalamocortical Network
Mutation of the metabotropic glutamate receptor type 7 (mGlu7) induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics, and pharmacology, we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at bot...
متن کاملIdentification of Positive Allosteric Modulators VU0155094 (ML397) and VU0422288 (ML396) Reveals New Insights into the Biology of Metabotropic Glutamate Receptor 7
Metabotropic glutamate receptor 7 (mGlu7) is a member of the group III mGlu receptors (mGlus), encompassed by mGlu4, mGlu6, mGlu7, and mGlu8. mGlu7 is highly expressed in the presynaptic active zones of both excitatory and inhibitory synapses, and activation of the receptor regulates the release of both glutamate and GABA. mGlu7 is thought to be a relevant therapeutic target for a number of neu...
متن کاملRole of the AMPA receptors of paragigantocellularis lateralis nucleus in the inflammatory pain modulation in male rat
Introduction: The 17β-estradiol acts as a neurosteroid in the brain and modulates nociception by binding to the estrogen receptors and also by allosteric interaction with other membrane-bound receptors like glutamate receptors. Paragigantocellularis lateralis nucleus (LPGi) is one of the important brain regions implicated in the pain modulation. So, this study was designed to evaluate the ...
متن کاملDisodium Cromoglycate Reverses Colonic Visceral Hypersensitivity and Influences Colonic Ion Transport in a Stress-Sensitive Rat Strain
The interface between psychiatry and stress-related gastrointestinal disorders (GI), such as irritable bowel syndrome (IBS), is well established, with anxiety and depression the most frequently occurring comorbid conditions. Moreover, stress-sensitive Wistar Kyoto (WKY) rats, which display anxiety- and depressive-like behaviors, exhibit GI disturbances akin to those observed in stress-related G...
متن کاملAssessing the effect of intra-paragigantocellularis lateralis injection of 17β- estradiol on the acute and persistent pain in the male rat
Introduction: 17β-estradiol modulates nociception by binding to estrogenic receptors and also by allosteric interaction with other membrane-bound receptors like glutamate and GABAA receptors. Beside its autonomic functions, paragigantocellularis lateralis (LPGi) nucleus is also involved in pain modulation. The aim of the current study was to investigate the role of the intracellular estrogen...
متن کامل